NAMA Shortcuts
Member Directory
Best of NAMA 2014
Upcoming Events
Chapters
Agri-Marketing Conf
More NAMA












GENETIC BASIS OF PEST RESISTANCE TO GM COTTON DISCOVERED
Source: AG Professional reports:

An international team led by scientists at the University of Arizona and the U.S. Department of Agriculture has discovered what happens on a molecular basis in insects that evolved resistance to genetically engineered cotton plants.

Their findings, reported in the May 19 issue of the journal PLOS ONE, shed light on how the global caterpillar pest called pink bollworm overcomes biotech cotton, which was designed to make an insect-killing bacterial protein called Bt toxin. The results could have major impacts for managing pest resistance to Bt crops.

"Bt crops have had major benefits for society," said Jeffrey Fabrick, the lead author of the study and a research entomologist at the USDA Agricultural Research Service in Maricopa, Arizona. "By understanding how insects adapt to Bt crops we can devise better strategies to delay the evolution of resistance and extend these benefits."

"Many mechanisms of resistance to Bt proteins have been proposed and studied in the lab, but this is the first analysis of the molecular genetic basis of severe pest resistance to a Bt crop in the field," said Bruce Tabashnik, one of the paper's authors and the head of the Department of Entomology in the UA College of Agriculture and Life Sciences. He also is a member of the UA's BIO5 Institute.

Based on laboratory experiments aimed at determining the molecular mechanisms involved, scientists knew that pink bollworm can evolve resistance against the Bt toxin, but they had to go all the way to India to observe this happening in the field.

Farmers in the U.S., but not in India, adopted tactics designed to slow evolution of resistance in pink bollworm. Scientists from the UA and the U.S. Department of Agriculture worked closely with cotton growers in Arizona to develop and implement resistance management strategies such as providing "refuges" of standard cotton plants that do not produce Bt proteins and releasing sterile pink bollworm moths.

Planting refuges near Bt crops allows susceptible insects to survive and reproduce and thus reduces the chances that two resistant insects will mate with each other and produce resistant offspring. Similarly, mass release of sterile moths also makes it less likely for two resistant individuals to encounter each other and mate.

As a result, pink bollworm has been all but eradicated in the southwestern U.S. Suppression of this pest with Bt cotton is the cornerstone of an integrated pest management program that has allowed Arizona cotton growers to reduce broad spectrum insecticide use by 80 percent, saving them over $10 million annually.

In the U.S., pink bollworm populations have not evolved resistance to Bt toxins in the wild. However, resistant pink bollworm populations have emerged in India, which grows the most Bt cotton of any country in the world.


Search News & Articles
























Proudly associated with:
American Business Media Canadian Agri-Marketing Association National Agri-Marketing Association
Agricultural Relations Council National Association of Farm Broadcasters American Agricultural Editors' Association Livestock Publications Council
All content © Copyright 2014, Henderson Communications LLC. | User Agreement